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It is shown that macroscopic correlations in a fluid are conserved for
macroscopically long times. The equations of conservation can be written
in a form independent of the density of the fluid and are therefore valid for
a liquid as well as for a gas. The possibility of developing a kinetic theory
of turbulence on the basis of these equations (along the lines of V. N.
Zhigulev and of S. Tsugé) is indicated.
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1. INTRODUCTION

The purpose of this paper is to study the propagation of two-point, long-range
(macroscopic) correlations in a fluid. We consider a fluid whose intermolec-
ular potential has a finite range and distinguish between long-range and
short-range correlations as follows: When the distance of separation between
any two molecules is of the order of the range of the intermolecular force,
we say the correlation between the molecules is short range; when it is
considerably larger, the correlation is long range. Short-range correlations
are studied in the theory of dense gases; long-range correlations usually

1 The contents of this paper formed part of the Ph.D. thesis submitted by the author
under the supervision of Prof. Harold Grad to the Department of Mathematics, New
York University and issued as NYU-—Courant Institute of Mathematical Sciences
Technical Report MF-72, October 1973.

2 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario,
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appear in a context apparently unrelated to their microscopic nature, namely,
in turbulent fluid dynamics. One of our aims is to clarify this connection.

Contributions to the long-range correlation between any two molecules
come from their initial correlation and their interaction with other molecules,
past and present. The Boltzmann equation (see Ref. 1 for a derivation), which
describes a rarefied gas, is based on the assumption that long-range correla-
tions are negligible. (It is sometimes® even stated that, over macroscopic
times, correlations are destroyed by collisions.) The question naturally arises
whether this assumption is correct. It was conjectured by Grad® that it
cannot be, and we verify this conjecture. More precisely, the result is that
long-range correlations are conserved over macroscopic times (i.e., times
much longer than the mean free time, such as are relevant on a fluid-dynamic
scale) in the sense that when they are expressed as correlations between any
two conserved macroscopic quantities—such as mass and mass, or mass and
energy—they obey conservation equations just like the ordinary fluid dynamic
quantities. Thus if the macroscopic correlations are large initially, they will
continue to be large for macroscopically long times.?

Long-range microscopic correlations can be transformed into correla-
tions between macroscopic quantities as follows. By introducing a probability
density on the phase space of the system (i.e., the fluid, regarded as a large
collection of molecules) and by localizing, with respect to the molecules, the
macroscopic quantities of interest—such as mass, momentum, and energy—
one can calculate their densities at a point in 3-space as well as the joint
densities of any two of them at any two points. Given any two macroscopic
quantities, one gets the correlation between them by subtracting the products
of their densities from their joint density. Our result is that if each of the
two macroscopic quantities is conserved and if the distance between the
two points chosen is larger than a few times the range of the intermolecular
force, then the correlation is conserved.

Some of the macroscopic correlation equations for a rarefied gas have
been given by Zhigulev'® and Tsugé.® Tsugé also raised the question of the
validity of the Boltzmann equation in the presence of turbulence. It is clear
that the equation is valid as long as macroscopic correlations are small, i.e.,
as long as the motion of the fluid is not turbulent. When there is turbulence,
all the derivations of the equation break down, but it is not clear whether
the equation itself remains valid. At any rate, in order to obtain the correct
macroscopic correlation equations for a rarefied gas, one should replace the
Boltzmann equation by a kinetic equation or sequence of equations which

8 Correlations, which we shall study here, refer to one time and two or more positions,
whereas fluctuations, which we shall not study here, refer to two or more times (and
any number of positions). Fluctuations, like correlations, can be studied either from
the point of view of fluid dynamics™® or from that of kinetic theory.®
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includes correlations. This we shall do in a subsequent paper. Qur work
could thus be interpreted as a further step toward a kinetic theory of
turbulence along the lines of Zhigulev and Tsugé.*

A few remarks are now in order. Conventional thermodynamics is
based on the assumption that the system has only two time-independent
integrals, namely, mass and energy. If the system has other integrals, the
thermodynamics that ensues differs from conventional thermodynamics and
has been discussed by Grad®%!® and Lewis.*® Fluid dynamics, however, is
based on the existence of another integral, namely, momentum. Systems whose
angular momentum is conserved are also sometimes considered.?-11,13.19
For the sake of generality, we consider a system whose molecules have
internal degrees of freedom and which has any or all of the above types of
integrals. Also, our derivation is valid even when the intermolecular forces
are velocity dependent, though we require that the divergence of the force with
respect to velocity vanish.

The method we use is essentially the same as that developed by Grad™?
in his generalization of Irving and Kirkwood’s®® derivation of the conserva-
tion equations of fluid dynamics. Grad’s method is more general than that
of Irving and Kirkwood in two ways: (1) Instead of considering only mass,
momentum, and energy as Irving and Kirkwood did, he considered general
integrals which are purely additive—as mass and momentum are—or which
have a purely additive part and a part that consists of two-body interactions,
as energy does. (2) He considered systems which have internal degrees of
freedom.

Because of the generality, Grad’s method is readily applicable to our
problem. It consists in computing the density in 3-space of an arbitrary
integral and, by using the Liouville equation, its rate of change. In order to
show that the equation for the rate of change is a conservation equation, one
has to just show that the terms other than the convective derivative of the
density are divergences of appropriate® vector functions. To derive the
conservation equations for macroscopic correlations, we proceed in a similar
manner. We first compute the joint density of a pair of integrals and then, by
multiplying the Liouville equation by the appropriate quantity and integrating
with respect to everything except the two space coordinates involved, obtain
an equation for the rate of change of the density. Using this and the equations
for the conservation of the density of each of these integrals, we get the
conservation equation for the correlation between them.

We assume that the molecules of the fluid obey the laws of classical
mechanics. Our notation is essentially the same as in Ref. 11. Moreover, for

¢ The idea that microscopic correlation functions can be used to describe turbulence
occurs in Ref. 9, but no equations for macroscopic correlations are derived.
5 See Section 4.
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the sake of completeness of presentation, Section 4 is reproduced from this
reference.

2. NOTATION AND CONVENTIONS

We consider a system consisting of N particles, each of which has s
degrees of freedom, three external and s — 3 internal. We denote the co-
ordinates of the ith molecule by

P = (xi, &, 91, p)
where x; is the position vector of the center of mass of the molecule and
& = dx;/dt is the velocity vector of the center of mass. The ¢, denote internal

coordinates and the p; = dg;/dt denote internal velocities.
Let

P = (PlaPZa-PSs"-apN)

denote a point in the 2Ns-dimensional phase space of the system. We intro-
duce a probability density (P, ¢) on this space and normalize it:

ff(P, £ydP = 1

where the integration extends over the entire phase space. Whenever we
suppress the time coordinate—as we did above—we mean that all the
quantities appearing are considered at one instant of time, namely . Now,
we consider a one-phase, one-component system, so that all the molecules
are identical. We therefore assume that f'is symmetric in all the particles, and
define the reduced or marginal densities—called the one-particle distribution
function, the two-particle distribution function, etc.—by

fi(P) = J FdP,dP, - dP,

J12(Py, Pa) =ffdp3 dpP, - dP,

and so on. Since we will need only the first four or five distribution functions,
we adopt the convention that if r is the total number of subscripts of a
distribution function, then it is the r-particle distribution function; the sub-
scripts themselves indicate the arguments of the function. For instance, f345
is the three-particle distribution function of the particles labeled 2, 4, and 5.
Clearly, the reduced densities are symmetric and normalized to 1.

The density f changes in time but in such a way that it satisfies the
Liouville equation:

n
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where F; = d¢,/dt is the acceleration of the center of mass and G; = dp;/dt is
the internal acceleration of the ith molecule. Here, the refers to summation
over the three external, or the s — 3 internal, degrees of freedom.

We write

N N
= 21 F;, G, = 21 G, 2)
i= i=

where Fi; is the acceleration of the center of mass of the 7th molecule due to
the jth molecule; similarly for G;;. The F; and G;; are the accelerations of
the ith particle due to external forces. We assume that

—Fii = Fll(Pi); Gii = Gll(Pi)
Fij = FIZ(Pi’ Pj), Gi;’ = G12(Pi> P,—:) (3)

We consider two cases; an integral e can be of type (a):
N
€= zfi, & = e(Py)
or type (b):

N
Z z €ijs & = e(py), & = e1o( Py, Py)

i,j=1
i<j

We assume that ¢; = ¢;; and that ¢; has a finite range. If b is any phase
function, i.e., if = ${( Py, Ps,..., Py), we define two mean values:

B = N [ gy Er ot

and

Here the convention is that the integration is performed with respect to all
the variables except those appearing in the denominator. The expected
value <¢> of ¢ is defined by

W = [vrap

3. DENSITIES

In order to calculate the amount of € in any region D, one has to localize
it. This we do as follows: ¢ is localized at x;, the center of the molecule, and
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e, is localized half at x; and half at x,. Now suppose € is of type (a) and let ¢
denote the characteristic function of the set D. Then the amount ¢, of €
in D is >; ¢(x;)e; and

(o> = [ Sbx)afdP = N[ fedp, @

Hence if D, denotes the density of ¢, D, = N f e f1 (dPy/dx,) in case (a).
A similar calculation gives

D= Nfaf R+ MO Do, e )

in case (b).

Before we compute the joint density of a pair of integrals, we notice
that there are three cases: (1) both integrals are of type (a); (2) one integral
is of type (a) and the other is of type (b); (3) both integrals are of type (b).
Strictly speaking, case 3 subsumes cases 1 and 2. Nevertheless, for the sake
of convenience and clarity, we shall consider them separately. Now, let
€', € be integrals. As in the case of the ordinary density, we calculate ep,
and €}, the amounts of ¢ and ¢” in regions D, and D,, respectively. If /.-
denotes the joint density of ¢’ and ¢”, calculation of (ep,ep,> gives

dP ‘v g APy dP
= No0 - w) [ AR+ VO - D [edh T ©

in case 1.
Similarly one obtains

= Nd(x; — xz)fel’e’{ dP1 + NN — 1)f€1'€gﬁ2%
+ M= D s, - 2 f or'elafin FATs
PHD] i dt
# M2 [ T ™
in case 2, and
= Na(x - xz)fel’e’i 9P St NN - 1) f 'l fm%

€1 €12

NN -1 iy dP dP
+ _L—z——z 8(x, — xz)f iz —— 1 2
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N N _ 1 " dP dP
# O [ aiasia G
NN = DN =D [ 0 o dPydPsdP,
N ( 2)( )f €1'€23./125 —_6;3{—17:'_)6_2__@
N v dP; dP
( 2 )5()61 - Xz)Jslzelflz —
L N~ I)J ‘A dpy dPs
5 €12€2 /12 dx; dx2
NN — DN = 2 e
LN )( ) f €13€5 /120 __%;_(%C;_a
LN -1 b
( . )5(x1 — xz)fqzélzflz dlh dls
NV D 2 dpP, dP, dP
+ ( 4)( )3(X1 - Xz)f€12€13f123 _—l—x—z_—3
1
LN - l)f 1o 1 dPy
7} €19€12/10 dx, dX2
NLLGASRT LSRN DAY T
€1a€21/123 dx, dx,
+N(N~—1)(N‘2)f 10 TEadPo dPy
12523 123 dx1 dxz'
SRGESDUEE) IR L T
13523 123 dxy dxg
NN — DN - 2)(V — 3 dP, dP, dP; dP,
RCEDUERICER P T L LA

in case 3.

The joint densities consist of three parts. The terms containing the
8-function give rise to self-fluctuations or autocorrelations. Those in which
the molecules at x, and x; interact with each other either directly or via a
third molecule express short-range correlations. The rest of the terms refer
to long-range correlations. Since we are interested only in long-range correla-
tions, we assume that the molecules labeled 1 and 2 are far apart. More
specifically, if o denotes the range of the intermolecular force, we assume
that in case |, particles | and 2 are separated by a distance larger than o.
Then Eq. (6) becomes

v, dPydP
= NV = ) [ fis ©)
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Similarly, if we assume that particles 1 and 2 are separated by a distance
greater than 2o in case 2 and 30 in case 3, Eqgs. (7) and (8) become

’_n drP dP
Jow = NQV = D) [ e/ i G502
NN — 1IN -2 ' dP, dP, dP.
+ ( 2)( )fﬁ €93f123 ___—_—al'xl d2x2 2 (10
and
" dP dP
Jeer = N(N — l)fﬁ E2f12_d_x}1—dx_z
NN - 1N -2 ) v, dP, dP, dP
+ ( 2)( )f( €3 €33 + Ezfls)flzs —Zilx—l—gz);z—_?
N(N DN — 2N — 3) ey dP, dP, dP; dP, an
) €13€24 1234 *“—_“_—‘dxl s
respectively.

4. SOME IDENTITIES AND A FORMULA OF IRVING AND
KIRKWOQOOD

Let € be an integral. Introduce the notation
36, aet
(@,J) = Fu + Gu
and
86” u
G, J, k) = 'Fm + G;k
There is no summation on repeated indices. Suppose the system is isolated
and consists of only one particle. Then de,/df = 0, which gives
861 361 —
5;1'51 + %'Pl =0 (12)
This is an identity that limits the class of functions ¢, that make e an integral.

1f the system is isolated and consists of two particles, then (d/di)(e; + €5) = 0
in case (a) and (d/dr)(e; + €5 + €15) = 0 in case (b). Using (12), one gets

LY+, D=0 (13)
in case (a) and '
LYY+ D+, +R, LD

8 0 0 o
612 51 612 fz "%12'171 + 'é%‘m'Pz =0 (14)
2

in case (b).
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Now suppose that the system is isolated and consists of three particles.
Consider case (b). One has (d/dt)(e; + €3 + €5 + €13 + €13 + €33) = 0, and,
on using identities (12) and (14), one obtains

(1,23) + 2,1,3) + 23, D) + G2D + B3LY + (1,32) =0 (19

We remark that no new identities are obtained by considering systems
consisting of more than three particles. Actually, even when a system of three
particles is considered, no new information is obtained in either case (a) or
case (b), provided one assumes in the latter case that the intermolecular
forces are independent of velocities.

One can verify the following formula of Irving and Kirkwood®® by
direct differentiation: If x;, x, are vectors and X is a vector function defined
by

K() = 3 f X, fo LBy — axa, 2y + (1 — a)xy) do dxy (16)

where ¢ is some smooth function and where the x,-integration extends over
the whole space, then

div K = (9/6x,) K = % j [4(xs, x3) — $(x, x1)] g an

Conversely, the right-hand side of (17) is the divergence of K [as defined
by (16)] plus some divergenceless vector function, as yet undetermined.

We shall make repeated use of this formula to identify certain terms as
divergences and the corresponding flow vectors with vectors of the form (16).
We choose this definition of K out of an infinity of choices. In order to show
that this is reasonable, one has to calculate the flow of € across the surface
of a domain D. It is necessary for this purpose to localize the flow of . For
the part of ¢ that is carried by the molecules, this has already been done by
the localization of e. For the part due to intermolecular forces, we assume
that the flow between any two molecules is along their line of centers. With
this assumption, one can show that the flow vector is exactly of the form (16)
if D is a half-space; if D is any other domain, it differs from a vector of the
form (16) by one which, though it depends on D, is small and localized.
Moreover, the difference has zero divergence and therefore makes no con-
tribution to the total flow of ¢ into the domain when integrated over the
boundary.

5. CONSERVATION EQUATIONS FOR CORRELATIONS

In order to obtain the equations for correlations, we shall need the
conservation equation for a general integral, which was derived in Ref. 11.
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But we need some notation to write it down. We shall adopt the convention
that if a quantity appears with subscript /, it is evaluated at x;. The mass
density p; and the macroscopic velocity u; of the fluid are defined by

dpP dpP
plszJ‘fla‘x—ia Plul—mNjglfl 1

The peculiar velocity ¢; of particle 1 is defined by ¢; = ¢ — u;. With this
notation and in case (a), the conservation equation takes the form

0 0
T+ o G + 5 Qi =0 (18)

where

Q1o = 0161 — N(N - DKy, (19)

where K1, is given by (16) in terms of
Oey 351. dP; dP,
qsla J (3§ F12 1 GlZ)le dx1 dx2

In case (b), let €f; = ¢; + H(N — 1)e;5. Then the equation is

o, | & ¢ 0 B
T a—xl'(€12u1) + N O =20 (20)
where
Qip = ciete — N(N — DKy, — IN(N — (N - 2)Kyy, 2D

where K, is the same as before and Kj, is given by (16), with

0 0 1] 7] dP, dP, dP.
b1 = f(;flla Fig + = 613 Glz ;gs Fsg + ;13 Gsz)flzs —6;_)61—72);2_%

Now we shall derive the equation for the joint density of a pair of
integrals ¢, ¢”. Recall that there are three cases: (1) both integrals are of
type (a); (2) one integral is of type (a) and the other is of type (b); (3) both
integrals are of type (b). Recall also that if

Q. = el'e; in case 1
Q1o = &1'€5 + H(N — 2e;'e55 in case 2
and
Q12 = €&'ez + J(N — 2)(e1'ez3 + ez€13)
+ (N — (N — 3)e}z€54 in case 3

then, in each case, 0, is the joint density in 3-space of ¢ and ¢’ when x;
and x, are far apart.
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We shall assume throughout that the system is isolated.

Case 1. On multiplying Eq. (1) (the Liouville equation) by N(N — 1)Q,
and integrating with respect to a’P/a’x1 dx,, one gets

agtlz =+ “_'(U1Q12) + (C1Q12) + (M2Q12) + (02Q12)

Oey’ £l Je;’ Y €5 te
— 2t — Zhpel — =2 e
6X1 1 aql V4 0X2 21

aEg ’ ae ! 661 ”
- %45 "Do€1” — (F12 BE, + Gya- ap)

96& deg\ dey’ dei’\
- (le 6‘§ + G- ap) - (N” 2)[(Fld 85 + GlS pl)fz

. 6 "
+ (an 862 + Gys- '\; ) 1] =0 (22)

o,

If identity (12) is used and if it is assumed that {x, — x;| > o, Eq. (22)
becomes

6_%1_2 + 5)%'(141@12) + (ulez) + (61Q12) + ——_.(Csz)

361 der’\ ( 362 8€g A
— N'_ 2)[(F]_3 85 + G13 ap )62 F23 + G23 ) —-0

The set over which the assumption that [x; ~ x;| > o fails is a strip
of width 2o in six-dimensional space. But ¢ is a small parameter, and ultimately
we will take a limit in which o — 0. We believe it can be shown by considering
the initial value problem that if the terms dropped are small initially, they
will remain small over a finite, macroscopic amount of time. Intuitively, this
means that if two specific particles are far apart initially, they have a very
small probability of coming close to each other within such a time.

On using identity (13) and the formula of Irving and Kirkwood, (23)
can be written as a conservation equation:

ag;z (u1 0i2) + (”2Q12) + (CJ Q1) + iz'(@lz)
— N(N — I)}N - 2)(-52—1«(1’ -+ ai;zwc(z)) =0 (24)
where

0 = [ axe, Py I
2
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with
o 1% dpP, dP
dV(x;, x5) = f (;fl Fip + el G13)f123 dxi dxz (25)
and
' dPl
«® = ffl K2(Py, x,) dx,
with

D€ Oeg dap, dpP.

() = Z2, =22, 27s

FP(xz, x3) = f(afz Fos + s G23)f123 dx, dx
Case 2. One first multiplies the Liouville equation by N(N ~ 1)Q,, and
integrates with respect to dP/dx, dx,. Then one observes that the bar denotes
integration (with respect to everything except x, and x,) and that, under the
integral sign, the dummy indices can be interchanged at will. For example,

Oeg ¢ = oey
ag, T g, @
If, further, one uses identities (12)~(14) and assumes that |x; — x| > 20,

one gets an equation which, on using identity (15) and the Irving-Kirkwood
formula, gives

F24'

20
Dt s o 00i0) + g 0ia) + @0 + 5 @0
NV - DV — 2) i-xm + i-.cm
0x, Ox,
_ NV = DV - 2)__8'_,,((3) _ NNV~ DN = )NV — 3)i,K(6) -0
2 3x1 3 9x2
(26)
where «'» and «? are the same as in (24) and
B = f KO(x,, Py, Py) L2l sz dPs
with
O¢ ¢q’ ) dP, dP
3) — 1 it 1 4
(}S f(aé— FJA P1 G14)ﬁ234 dxl dx4
and
, dpP
«® = fsl K®(Py, x,) Ec—i
with

Oegg O¢ O¢h Oe dP, dPs dP
(6 — “eas “€as 23, 2 3 4
(ﬁ J‘ <a§ F24 Pz G24 853 F84 6p3 GSé).f.:l234 dx2 dX4
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Case 3. On multiplying the Liouville equation by N(N — 1)Q.; and
integrating with respect to dP/dx, dx,, and following the same type of
reasoning as in cases 1 and 2 (with the exception that it is assumed that

|xs — x1] > 30), one gets
0Qrz |
ot 8x1 (4:012) T (”2Q12) T (Clle) Ly (C2Q1o)

8 8
— — — e ) (D)
NV — 1N 2)(—8)rl 4 )

_ NN = DIV = DV~ 3) _8._.,{(3> + i.,{w
2 ox, ox,

NN = DNV = W — 3) _a_.K<5> + _a__K«;)
3 ox, oxg

O NW = DN 2N -=3YN -4 (o KD 4 —6—-K‘8> _0
6 0x; Oxg
27
where 'V, «2, «®, and «'® are the same as before, and
K = fﬁ sK®O(Py, x5, P3) dPl dPy
1
with
Oeg ey dp, dp
@ e és 2 0Ly
¢ - J(agz F24 + 8p2 G24>.f1234 dx2 dX4
and
" dP
« =[x, p)afe
with
5 — O€13 as13 8513 36’13. dP; dP; dP,
= f (aé Fuat 50 Gt g Fat ops Gos ) Frase =g,
and
sz dP4

K(7) = f K(7)(x15 P25 P4)

with

e’ e ¢’ e} dP, dP; dP
&P :J‘( ?3 Fys + =23 613 G15 ags Fas + 1)133-G35)f12345 ;’xl 5x5 5
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and

&® = f €13 K®(Py, Xz, P3) —5— dPl dPs

with

Oeq Deg ey e, dP, dP, dP,
89 = (L P4 5206 + G Fun 0 528G famae D

Before we can write down the conservation equations for correlations,
we have to introduce some notation:

‘/‘12 =f12 ‘flfz
‘!’123 =f123 “‘flfzfa - [fl‘/‘23]3

and

b1o3a = frosa — fifofsfe — [fihasal® — [fifoifsal® — olaabad®

where « is some number® and where the square brackets indicate a symmetric
sum; the number appearing above each sum indicates the number of terms
in it. For example,

[fithaa? = fithas + fothis + fathro

The above formulas serve as definitions of 5, 143, etc. In analogy with
the definition of the r-particle distribution function, i, , is called the
r-particle correlation.

The notation introduced above makes it possible to express the r-particle
correlation function in terms of the r-particle distribution function and
lower order correlations or, equivalently, lower order distribution functions.

If ¢, ¢" are any integrals, we shall denote the correlation between them
by ¢;, and its convective flow by a;, and by,.7 Specifically, in case 1

~ == s 0, dP;dP,
N° [[er'eus

Cia = Q1p — €' €5 = €) €9 e dre
14Xy

ron 2 ' " 1 2
a = C — (q€ €y = N Ci€1 € ¢5 — T
12 1Q12 1%1 *2 f 1%1 ®2¥12 dxl dx

and

ll

/ rn dP dP
€, = N? fczﬁ €12 dxi dxz

¢ Different choices of « give rise to different ways of truncating fisse. For instance
Pios = 0 and a« = 1 gives the well-known Mayer truncation; « = 0 gives a truncation
suggested by Grad (private communication).

7 In expressing these quantities, we shal put N> N — 1 ¥ N -2~ N -3~ N — 4,

€

bis = C2Q12 -
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In case 2
= = - =

Ci1g = le — € €3 — ‘551 €23
dP, dP
— 2 rn 1 2
N fel E2‘/’12 _——dxl dx2
N3 "
+ 5 [ er'ebaaas + faths + fob)

dPl dP, dPg
dx, dx,

a,5 and b, are defined by inserting ¢, and ¢, respectively, in the integrands

in the definition of ¢,,.

In case 3
_ == 2 ==
C10= Q1o — €' €5 — 3 (51’ €ga + fg 513) ~r €13 €4
r dPl dP2
= € E2‘#12 dx, dx,
dpP, dP, dP,

N3 r "
+ —2—f€1 €a3(bras + Sotbis + fathio) dxy dx,

Nef( dpP, dP, dP
+ —2‘f€2€13(¢‘123 + fithas + fathia) —;;1‘572—?

N €i5€aa(Prosa + [f[1basal® + fifobss + fifithas + fofsthia

T

dP, dP, dP; dP
+folsbia + aiapse + (@ — Db + ohagihss) — dxf dxz3 4

a;, and b,, are defined the same way as in cases I and 2.
We are now ready to write down the equations for the correlations.

Case 1. Using Egs. (18) and (25), we get

dc 0
8;2 (“1012) + (”2512) + aiz
o 0 0
— LY R ¢} L
+ dxs bis + ax, + oxy 0 (28)

where

K(l)’ — _NSK(l) + €gN2K1a, K(2)’ — __N3K(2) + €1’ NZKZa.
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Case 2. Using Eqgs. (18), (20) and (26), we get

ac 8
- T o (“1C12) + (”2012) + ao
“or X1
+ _6...[7 + _a._.(K(l)’ + K(S)’) + i.(K(Z)’ + K(G)’) =0 (29)
ox, 27 ox, oxg
where ¥ and «®" are the same as before, and
KD = —IN4%® 4 %Nsi'z'aKla, K® = —IN*® 4 %NQ—:I/K%
Case 3. Using Eqs. (20) and (27), we get
8c12 7 0

(u1012) + (uzclz) + ‘112 + “byg

ot 8x2

4 a___.(K(l) + K(S) + K(S) + K('T)) + (K(2) + K(‘}) + « (6)’ + K(S)’) — 0

(30)
where V", «?', «®, and «®" are the same as before, and
K(‘l)' — “‘%N4K(4) + LN3E’13K23" K(S)’ — —%N4K<5) + %N3€;Klb
K" = —IND + 1N 524 1b> k" = —IN°® + IN*5Ko,

We emphasize that all the foregoing calculations apply to a fluid of any
density and that rarefaction has nothing to do with correlations. But when a
gas is rarefied, the terms containing the intermolecular potential explicitly
can be dropped. The equations for the correlations take the form

8512

ot
where the quantities Cis, @15, and by, are deﬁned as in case 1. For a rarefied
gas, the correlation equations corresponding to Euler’s equations have been
derived by Zhigulev® and those corresponding to the Navier-Stokes

equations by Tsugé.””® Finally, we shall consider some special cases of
Egs. (28)-(30).

Mass—Mass. €’ = m, e’ = m, and
1

0 0
(“1»;2] + (uzclz) + alz 'é-'blz =0
Xo

dP, dP
— N24,2 14l
¢15 = N?m J“/hz dx, dx,

; . dP, dP dP, dP
i N2p,2 i 1 2 — i 1 2
aiy = N°m J‘Cllwblz dx, dx, fe = N2m J Sg S dxl ax,

«1% and «?"* vanish. Equation (28) becomes

dcyy 0 . 8a12 obl o

5t + %, 1( 'c12) + (”2 €12) + =5 ”956—11

=0 31
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Mass-Momentum. ¢, = m, € = mé&,’, and

. dP, dP
I NZ2m2 i 1 2
Cig N3m f‘fZ ¢12 dxl dx2

kY = 0 and
@yij — 3, .(2)if 2Kt (2)if (2)if dPl
K ———NK +P1N Kza, K = m K (Pl,x E{"
1
with

) ) dP, dP.
(2 3 273
¢ mszsﬁzs dx, dxs
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Let y7 = x37 — x,°. Then, if the intermolecular forces are central, Fi;

depends only on r = |y[:
Fiy = yF*(0)
where F*(r) is some function of r. Let

8123(P1, Xz, X3) = fflza cjiiz i:::
Then
¢ = my F*(r)g12s
and

1
K®9 = %mfyiij*(”)J- Guaalxs — Ay, xg + (I — Ny)drdy
0

where we have suppressed the dependence of g05 on P;.
Recalling that

1
Ki = %mf yiy]'F*(r)J fag(Xo — AV, Xo + (1 — M) drdy
0
we obtain

. ot dP
< = N [ YYFH) | Ghias + Fabss + fubia) A dy 2
0 ’ 1

where the integrand of the inner integral has already been integrated with

respect to dPy dPs/dx, dx; and is evaluated at (x, — Ay, xo + (I — A)p).

"k

Mass—-Angular Momentum. ¢’ = m, ey® = m{x,/¢* — x,567) + pif,
where p, is the internal angular momentum of molecule 2 (if i, j, k are cyclic,

we denote the /th component of u, by pZF). We have

) . . dpP, dP . dP, dP
ko 2,,,2 i¢ ko k¢ g 1 2 2 ik 1 2
ofs = N°m J(Xz £, X € W12 dx, dx, + N mjl’-z‘/’lz dx, dx,

Dk O’ K@ — _N3K(2)lj}c + N2P1Ké];c
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Momentum—Momentum. &f = mé, 5 = mé&¥, and
. dpP, dP
ik = NZm2 Jg Ky L1 2

C13 N EJE dx, dx,

If the intermolecular forces are central, we proceed in the same way as in
the mass-momentum case and obtain (¥ = x5 — x,5, r = |y|)

m2N3 dP
e = P Lyt e) [ s + i + S dry 2
and (3} = xgt — x5, r = |y|)
" dP
K@ j VYETF() j (a0 + fara + fubia) dA dy 22
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